首页> 外文OA文献 >Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli
【2h】

Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli

机译:克服异源蛋白质相互依赖性以优化大肠杆菌中p450介导的紫杉醇前体合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (similar to 570 +/- 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.
机译:代谢工程学的最新进展证明了利用生物化学合成复杂分子的潜力。迄今为止,许多进展已利用越来越精确的遗传工具来控制酶的转录和翻译,以实现卓越的生物合成途径性能。但是,将这些方法和原理应用于更复杂的天然产物的合成将需要一套新的工具,以在体内实现各种类别的代谢化学(即环化,氧化,糖基化和卤化)。在这些多样化的化学方法中,氧合是合成复杂天然产物最具挑战性和关键性的因素之一。在这里,以紫杉醇为模型系统,我们使用大自然最喜欢的加氧酶,即细胞色素P450,在大肠杆菌中进行高水平的加氧化学反应。发现P450表达和上游途径酶的表达意外耦合,并被确定为功能性氧化化学的主要障碍。通过优化P450的表达,还原酶伴侣的相互作用和N末端修饰,我们在大肠杆菌中获得了最高的氧化紫杉烷滴定度(约570 +/- 45 mg / L)。总而言之,这项研究将大肠杆菌确立为P450化学的易处理宿主,强调了在合成生物学和代谢工程学背景下蛋白质相互依赖性的潜在幅度,并指出了复杂化学实体的微生物合成的广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号